

Unleashing Linear Optimizers for Group-Fair Learning and Optimization

Daniel Alabi¹, Nicole Immorlica², Adam Tauman Kalai²

Harvard University¹, Microsoft Research²

Group Fairness

Intuition: No group of individuals should be treated unfairly

X: set of individuals

Y: set of outcomes

Split X into K groups $X_1, ..., X_K$ and define "fair function"

 $f(X_1,...,X_K)$ to minimize unfairness between outcomes of groups.

Two Example "Group-Fair" Definitions

1. Demographic Parity:

Select (randomized) hypothesis h such that $\forall k \in [K], \hat{y} \in \{0, 1\}$

 $\mathbb{P}[h(x) = \hat{y} | x \in X_k] \approx \mathbb{P}[h(x) = \hat{y}]$

2. Equalized Odds:

Select (randomized) hypothesis h such that $\forall k \in [K], \widehat{y}, y \in \{0, 1\}$

$$\mathbb{P}[h(x) = \hat{y} | x \in X_k, Y = y] \approx \mathbb{P}[h(x) = \hat{y} | Y$$

$$= y]$$

The goal is to minimize "group-fair" functions using "black-box" approximate linear optimizers.

Previous Work on Group-Fair Reductions

ABDLW (FATML '17, ICML '18):

Users can specify convex constraints that can be folded into the objective

(e.g. demographic parity, equalized odds can be specified as linear constraints)

NRSA (ICML '15):

Can handle convex functions and ratio-of-linear functions (e.g. F1, G-mean).

DIKL (FAT* '18):

Can only handle non-decreasing functions and needs access to protected attribute during classification stage.

Consider the following non-convex objective that combines misclassification rate with a penalty for M-F disparity amongst loan approvals.

$$\min \mathbb{P}[c(x) \neq y] + (\mathbb{P}[x \in X_F | c(x) = 1] - \mathbb{P}[x \in X_M | c(x) = 1])^2$$

over $c \in \mathcal{C}$

where $X = X_F \cup X_M$

For simplicity, assume that $\mathbb{P}[c(x) = 1 \land y = 0] = 0$ (no false positives)

Algorithm 1 GroupOpt: Minimizing group-loss f using linear optimizer

Input: accuracy $\epsilon > 0$, $f : [0, 1]^K \to \mathbb{R}$, loss assessor ℓ_{τ} , (nonnegative) linear optimizer M_{τ}

Output: $c \in \mathcal{C}$

Let
$$\beta = \frac{\epsilon}{5}$$
, $q = \frac{\beta}{\sqrt{K}}$, $\tau = \frac{\beta^2}{\sqrt{K}}$, $T = \frac{K}{\beta^2} \ln \frac{K}{\beta^2}$.

Create grid $G = \{0, q, 2q, 3q, ..., \lfloor 1/q \rfloor q\}^K \subseteq [0, 1]^K$.

Check if f is nondecreasing coordinatewise on G. If so, let N=1 else N=0.

Sort points in G by f(r) in increasing order

for r in G do

$$c_1 = M_{\tau}(0)$$
 // any initial choice

for
$$t = 1$$
 to T do

$$\hat{l}_t = \max\left(\frac{1}{t}(\ell_\tau(c_1) + \dots + \ell_\tau(c_t)), Nr\right)$$

$$c_{t+1} = M_{\tau}(\hat{l}_t - r)$$

if $\|\hat{l}_T - r\| \leq 3\beta$ then

$$|$$
 return $c = U$ niformDist $(\{c_1, c_2, \dots, c_T\})$ // uniform probability distribution end

end

Losses

min $f(\ell_1(c), ..., \ell_K(c))$ to within ϵ over $c \in \mathcal{C}$ where $\ell_k(c)$ is the loss incurred by group $k \in [K]$ for classifier $c \in \mathcal{C}$ using:

New Work: Any Continuous Objective of Group

1. (Approximate) Loss Assessor: $\ell_{\tau}: \mathcal{C} \to [0, 1]^K$ such that

$$\|\ell_{\tau}(c) - \ell(c)\| \le \tau$$

- 2. (Approximate) Linear Optimizer: $M_{\tau} \colon \mathbb{R}^K \to \mathcal{C}$ such that for any $w \in \mathbb{R}^K$ $w \cdot \ell(M_{\tau(w)}) \leq \min_{c \in \mathcal{C}} w \cdot \ell(c) + \tau ||w||$
- 3. Oracle access to $f:[0,1]^K \to \mathbb{R}$

Main Theorem & Learning Corollary

Theorem: For constant (small) $K \ge 1$ and any $\epsilon \in (0, 1]$,

$$f\left(\ell(GroupOpt(\epsilon, f, \ell_{\tau}, M_{\tau}))\right) \le \min_{c \in \mathcal{C}} f(\ell(c)) + \epsilon$$

GroupOpt makes poly(1/ ϵ) calls to ℓ_{τ} , M_{τ} , f with $\tau = \frac{\epsilon^2}{25\sqrt{K}}$.

Corollary: Let M be an efficient agnostic learner and $f: [0, 1]^{2K} \to \mathbb{R}$ be any L-Lipschitz function. For any $\epsilon, \delta \in (0, 1]$, with probability $\geq 1 - \delta$, we output \hat{c} such that $f(FPR(\hat{c}), FNR(\hat{c}))$ $\leq \min_{c \in \mathcal{C}} f(FPR(c), FNR(c)) + \epsilon$

using oracle access to $p_k^i = \mu(X_k \times \{i\})$ and $\operatorname{poly}\left(L, \frac{1}{\epsilon}, \frac{1}{\delta}, \frac{1}{\min p_k^i}\right)$ examples and calls to f, M.

Idea: We simulate ℓ_{τ} , M_{τ} using a polynomial number of examples.