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Group Fairness

Intuition: No group of individuals should be
treated unfairly

X : set of individuals

Y : set of outcomes

Split X into K groups X1, ..., Xx and define
“fair function”™

(X, ..., Xx) to minimize unfairness between
outcomes of groups.

Two Example “Group-Fair” Definitions
1. Demographic Parity:

Select (randomized) hypothesis h such that
vk € [K],y €{0,1}
Plh(x) = Y|x € Xi| = P[h(x) = J]

2. Equalized Odds:

Select (randomized) hypothesis i such that
vk € [K],y,y €{0,1}
Plh(x) =JIx € Xi.,Y =y] = Plh(x) =J |Y

= V]

The goal 1s to minimize *“group-fair”
functions using “black-box” approximate
linear optimizers.

Previous Work on Group-Fair Reductions
ABDLW (FATML 17, ICML “18):

Users can specify convex constraints that can be
folded 1nto the objective

(e.g. demographic parity, equalized odds can be
specified as linear constraints)

NRSA (ICML “15):

Can handle convex functions and ratio-of-linear
functions (e.g. F1, G-mean).

DIKL (FAT* ‘18):

Can only handle non-decreasing functions and needs
access to protected attribute during classification

stage.

Consider the following non-convex objective that combines misclassification rate with a penalty for M-F

disparity amongst loan approvals.

min P[c(x) # y] + (P[x € Xr|c(x) = 1] — P[x € Xy|c(x) = 1])?

over ¢ € C
where X = X U Xy,

For simplicity, assume that P|[c(x) =1 Ay = 0] = 0 (no false positives)
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“— c¢(x) = 0 (reject all loans)

Algorithm 1 GROUPOPT: Minimizing group-loss f using linear optimizer

Input: accuracy € > 0, f : [0, 1]% — R, loss assessor £, (nonnegative) linear optimizer M,

Output: c€ C

e _ B __ B p_ K\, K
LCt,B—s,Q—\/R,T—\/}—{,T—Eglnﬁ.

Create grid G = {0, ¢,2q¢,3q,...,|1/q|q}* C [0,1]%.

Check if f is nondecreasing coordinatewise on GG. If so, let N = 1 else N = 0.
Sort points in G by f(r) in increasing order

for r in G do

c1 = M,(0) // any initial choice

fort =1t0oT do

iy = max (1(€-(c1) + -+ + £ (cr)), Nr)

cey1 = M (l; — 1)

end
if HiT _ 'r” < 343 then

end
end

. return ¢ = UniformDist({c;,c2,...,cr}) // uniform probability distribution

New Work: Any Continuous Objective of Grou

Losses

min f (£, (c), ..., £x (c)) to within € over ¢ € C

where £}, (c) is the loss incurred by group k €
| K] for classifier ¢ € C

using:

1. (Approximate) Loss Assessor: £,: C —
[0, 1]¥ such that
[€:(c) =€)l =
2. (Approximate) Linear Optimizer:
M.:RX — C such that for any w € R¥
w - f(MT(W)) < minw - £(c) + t||w|

ceC

3. Oracle access to f:[0,1]¥ - R

Main Theorem & Learning Corollary

Theorem: For constant (small) K = 1 and any
e € (0,1],

f (f(GroupOpt(e, f, 4, MT)))

< rcneigf(f(c)) + €

GroupOpt makes poly(1/€) calls to £, M, f
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with T =

Corollary: Let M be an etficient agnostic
learner and £: [0, 1]“% — R be any L-Lipschitz
function. For any €, € (0, 1], with probability
> 1 — 0, we output ¢ such that
f(FPR(¢),FNR(¢))
< rcneigf(FPR(c), FNR(c)) + €

using oracle access to pi, = u(X, x{i}) and
1 1 1

poly(L, - ) examples and calls to

)8) . L
3" pigl
f,M.

ldea: We stmulate £, M, using a polynomuial
number of examples.




